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INTERACTION OF INTERNAL GRAVITY CURRENT

WITH AN OBSTACLE ON THE CHANNEL BOTTOM

UDC 532.59E. V. Ermanyuk and N. V. Gavrilov

The problem of hydrodynamic loads arising from the interaction of gravity currents with an obstacle
on the channel bottom was studied experimentally. The gravity-current structure was visualized at the
stage of formation and at the stage of interaction with the obstacle. The dependence of the propagation
velocity of the gravity-current front on the nondimensional current depth and the Archimedes number
was studied. In the region of self-similarity in the Archimedes number, the behavior of hydrodynamic-
load coefficients was studied as a function of the nondimensional gravity current depth.
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Introduction. The problems of estimating the propagation velocity of gravity currents and the hydrody-
namic loads induced by these currents on various obstacles are of great practical importance. In particular, much
attention has been given to the dynamics of snow avalanches (see a review [1]). In oceans, an analog of such currents
are gravity turbidity currents that propagate down seamounts covered with bottom sediments (see a review [2]).
Such currents are a great hazard to underwater vehicles and service lines. In the present work, we studied exper-
imentally the model problem of the action of internal gravity current due to intrusion of a denser fluid into fresh
water on an obstacle on the channel bottom. The subrange of the problem parameters is determined in which the
fluid viscosity effects are self-similar (in particular, the propagation velocity of the current front does not depend
on the particular value of the Archimedes number), because of which the main modeling criterion is the Froude
number. For this subrange of the parameters, the characteristic values of the hydrodynamic loads generated by
gravity currents at submerged obstacles are determined as functions of the ratio of the vertical dimension of the
current core to the total fluid depth.

Experimental Technique. A diagram of the experimental setup is shown in Fig. 1. The experiments were
performed in a 320×20×12 cm hydrodynamic tank separated by a partition 1 into two equal parts. The left half of
the tank was filled with pure water of density ρ1 and depth H, and the right half with an aqueous solution of sugar
of density ρ2 and depth h2, above which there was a pure water layer of density ρ1 and depth h1; h1 + h2 = H. In
the experiments, the depth ratio h2/H was varied in the range 0.1 < h2/H < 0.84. To analyze the role of the scale
effect, we performed experimental measurements of the gravity current characteristics at H = 6 cm and H = 10 cm.
When the partition was removed, an internal gravity current 2 propagated to the left over the tank bottom and a
depression wave 3 (the dashed curves in Fig. 1) propagated in the right part of the tank.

The instantaneous hydrodynamic loads resulting from the interaction of gravity currents with an obstacle
in the shape of a rectangular cylinder 4 of height b = 2 cm and width 1 cm were measured using a two-component
hydrodynamic balance 5 [3]. The gap between the lower surface of the rectangular-cylinder cross section and the
tank bottom was 0.5 mm. The analog signal from the hydrodynamic-load sensors and wavemeter 6 was processed
on a computer furnished with a 12-digit analog-to-digital converter. The gravity-current pattern and its interaction
with the submerged obstacle were recorded with a digital camera. Visualization was performed using the following
technique [3, 4]: a luminous screen with a grid of inclined lines drawn on it was photographed through the water
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Fig. 1. Diagram of the experimental setup.

Fig. 2. Development of the mixing process at the current head for α = 0.4, H = 10 cm, and ε = 0.01:
the interval between the frames is ∆t = 1.27 sec; the left boundary of the frame is at a distance
L/H = 0.5 from the partition; the horizontal dimension of the frame is 2H.

layer. In zones with a high density gradient, a characteristic distortion of these lines was observed, and in active-
mixing zones there was a loss of the optical transparency of the fluid.

Experimental Results. In the present study, experimental information on the structure of developed
gravity currents [3] is supplemented by a detailed visualization of the initial stage of current formation. The
structure of the current that arises after the removal of the partition is shown in Fig. 2. Shear instability on the
boundary between the upper and lower layers gives rise to regions of intense mixing, which increase with time. Near
the bottom there is also a region of intense mixing. At the gravity-current head, the region occupied by a nonmixed
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Fig. 3. Froude number versus nondimensional current depth α (a) and local Archimedes num-

ber A∗ = A(2α)3/2 (b) for various values of the criterion A.

fluid of density ρ2 decreases with time. In the fully developed gravity current, the entire current head is a visually
opaque region of mixed fluid. The energy loss in mixing and overcoming the friction against the tank bottom leads
to a decrease in the propagation velocity of the current front V compared to its value predicted by the ideal fluid
model [5]. For the Froude number defined as Fr = V/

√
εgh∗ [ε = (ρ2 − ρ1)/ρ1, g is the acceleration of gravity, and

h∗ is the gravity-current depth behind the head], the model of [5] gives the estimate

Fr (α) =
( (1− α)(2− α)

1 + α

)1/2

, (1)

where α = h∗/H. In practice, the parameter h∗ is usually assumed to be the depth of the nonmixed current
core [2]. A visual observation of the current pattern in the present problem showed that it is possible to set
h∗ = h2/2. Below, as the parameter α we use the quantity α = h2/(2H). In a system of two miscible fluids,
the gravity-current velocity is determined by the following basic dimensional parameters: ρ1, ρ2, g, h, H, ν1, ν2,
and æ (ν1 and ν2 are the kinematic viscosities of the fluids of density ρ1 and ρ2, respectively, and æ is the diffusion
coefficient of the substance that produces stratification). In our experiments, the relative difference of the fluid
densities ε was small, the physical properties of the fluid of density ρ1 did not change, and the Schmidt number
Sc = ν2/æ was large (about 103), so that its variation did not influence the results of the experiments. Therefore,
the experimental results are conveniently represented in nondimensional form as a family of curves of Fr(α) obtained
for various values of the Archimedes number A = (εgH3/ν2

2)1/2, which characterizes the maximum (at h2 = H)
ratio of the buoyancy to viscosity forces. In this case, the use of the Archimedes number, which is determined by
the initial parameters of the problem (i.e., which is a similarity parameter) is preferred over the traditionally used
Reynolds number Re = V h∗/ν2 [2], which includes the a priori unknown parameters V and h∗. A similar situation
arises in the problem of free motion of a body in a fluid under gravity [6, 7].

Generally speaking, the propagation velocity of gravity currents depends on the distance L traveled by the
current front from the partition 1. However, in the so-called inertial mode, the velocity of the front depends weakly
on L [2]. For definiteness, in the present work the velocity V was measured at L/H = 4 from the partition. At
such a distance, the structure of the current head can be considered to be completely formed [8]. Experimental
curves of Fr(α) obtained for various different values of A are presented in Fig. 3a, where the solid curve refers to
the theoretical curve (1). It is evident that the experimental points are below the theoretical curve. Assuming
that after the removal of the partition, the perturbation fronts move to the right and left at the same velocity
and that h∗ = h2/2, from the conservation law of mechanical energy we obtain the estimate Fr(α) = (1 − α)1/2.
This estimate is in good agreement with experimental data. A detailed discussion of the various approaches to
estimating the propagation velocity of gravity currents is given in [9]. For small α, the value of the Froude number
decreases sharply because of an increase in the viscous loss due to friction against the bottom in the thin lower
layer of the fluid, for which it is possible to introduce the local Archimedes number A∗ = (εgh3

2/ν2
2)1/2 = (2α)3/2 A.
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Fig. 4. Gravity current flow an obstacle for ε = 0.01, H = 10 cm, and α = 0.4: the time step
between frames a–d is ∆t = 1.27 sec, and that between frames d–e is ∆t = 7.6 sec.

Figure 3b gives experimental curves of the Froude number versus the local Archimedes number A∗. It is evident
that the data obtained for various values of A have a common asymptotic behavior for small A∗ (of order A∗ < 500).
Thus, for rather small α in experiments, the dynamic characteristics of the current in the thin fluid layer at the
bottom cease to depend on α and are functions of the local Archimedes number A∗. An increase in the global
Archimedes number leads to an increase in the range of α in which the experimental data for the dependence Fr(α)
have a universal nature (see Fig. 3a). According to the data presented in Fig. 3, one might expect that in the
experiments performed for A = 9900 and α > 0.15, the results of measurement of the dynamic effect of the gravity
current on the bottom at the tank are self-similar for large A. Thus, as is shown in the experiments of [3], Froude
modeling is performed. The data presented in Fig. 3 suggest that in experimental studies of discontinuity decay
under conditions of self-similarity in A, it is at least necessary to require that A∗ > 1600.
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Fig. 5. Horizontal (a) and vertical (b) hydrodynamic-load coefficients versus nondimensional time τ
for various nondimensional gravity-current depths α.

We also note that the obstacle used in the experiments has a rectangular cross section. It is known that
because of separations at the sharp edges, a self-similar regime of current flow over such obstacles is reached at
moderate Reynolds numbers (see, for example, [10]). The current pattern near the obstacle is shown in Fig. 4.
The impact of the current head on the obstacle leads to current separation, accompanied by formation of a jet flow
(Fig. 4b). At the successive times, undular bore type flow is produced ahead of the obstacle, and a hydraulic jump
is formed behind the obstacle (Fig. 4e).

The curves of the hydrodynamic-load coefficients versus time presented in Fig. 5 are obtained for ε = 0.02,
H = 10 cm, and A = 9900. The abscissa plots the nondimensional time τ = V t/H reckoned from the time the
current front passes the wavemeter 6 (see Fig. 1), and the ordinate plots the horizontal Cx (Fig. 5a) and vertical Cy

(Fig. 5b) load coefficients defined as Cx,y = 2Fx,y/(ρ2V
2b) (Fx,y are the loads per unit length of the obstacle).

After a time period ∆τ ≈ 10 from the beginning of interaction of the body with the current front, a quasistationary
current regime is established and the values of the horizontal load coefficients Cx obtained for various α are close
(Cx ≈ 2).

For α = 0.4, i.e., for the maximum value of this parameter in the present experiments, the peak horizontal
load developed during the interaction with the current head exceeds the quasistationary load by a factor of 1.5.
A decrease in α leads to a reduction in the ratio of the peak horizontal load to its quasistationary value. The
attenuation of the undulations of Cx due to a decrease in α can be explained qualitatively by the fact that,
according to (1), the values of Fr increase with decrease in α. It is known that an increase in the Froude number
in flows over obstacles weakens the trend toward the formation of upstream undular bores and enhances the trend
toward the formation of bore type currents with a breaking leading front [11].

In contrast to the horizontal load, the vertical-load coefficients Cy obtained at the moment of interaction
of the current head with the obstacle are smaller than the quasistationary values for large times τ . As is evident
from Fig. 5b, a jet flow with a separation at the corner point of the body is formed at the moment of impact.
Accordingly, the current velocity directly above the body and the suction force acting on the top of the obstacle
are small. Apparently, the local maximum of the vertical load under the impact is related to a pressure rise in the
gap between the lower surface of the obstacle and the tank bottom. At large times, flow over the obstacle forms
and a suction force of considerable magnitude arises.

The effect of flow blocking by the obstacle becomes apparent if the data are represented in a different
normalization. It is known [12], that the stationary incidence of a flat horizontal jet of an ideal fluid on a vertical
wall gives rise to the dynamic load ρV 2

0 h0 (ρ is the density, V0 is the velocity, and h0 is the jet thickness), which
is equal to the total dynamic-momentum flux of the jet. In the experiments described here, the total dynamic-
momentum flux of the jet of the lower fluid layer is characterized by the quantity ρ2V

2h2/2. Accordingly, it is
possible to introduce the nondimensional coefficients C∗

x,y = 2Fx,y/(ρ2V
2h2), which are linked to the previously

introduced coefficients by the relation C∗
x,y = Cx,yH/(bα). Curves of C∗

x(τ) and C∗
y (τ) obtained for various values

493



t5 10 15

0.5

1.0

Cx*

a=0.15
0.20
0.30
0.40

1.5

0

0

bà

t5 10 15

0.5

Cy*

1.0

0

0

Fig. 6. Flow blocking effect for dependences C∗
x(τ) and C∗

y (τ) for various values of α.

of α are given in Fig. 6. As one might expect, for an obstacle of unchanged height b, the characteristic values of
C∗

x(τ) increase with decrease in α because in this case the ratio b/h2 increases and the effect of flow blocking by
the obstacle becomes greater. A similar effect occurs for curves of C∗

y (τ) obtained for various α. In [13], the ratio
of the fluid flow over an obstacle to the fluid flow in the gravity current upstream of the obstacle is considered as
a parameter that characterizes the blocking effect. In our work, this information is supplemented by experimental
studies of the hydrodynamic loads that characterize the momentum flux in the system. The above-stated features
in the behavior of hydrodynamic loads can serve to refine estimates of the dynamic effect exerted on obstacles by
powder avalanches [1], which behave as a Newtonian fluid.

Conclusions. The present study showed that in the problem of discontinuity decay in a system of two
miscible fluids, experimental data on the propagation velocities of gravity current fronts are conveniently represented
as a dependence of the characteristic Froude number on two parameters: α (the ratio of the gravity current depth
to the total fluid depth) and A (the Archimedes number determined from the total fluid depth). For measurements
under conditions of self-similarity in A, the local Archimedes number A∗ (determined from the depth of the lower
fluid layer) should exceed 1600. Measurements were performed of the hydrodynamic loads induced by a gravity
current over an obstacle on the tank bottom. It was shown that at the stage of interaction of the body with the
current head, the nonstationary hydrodynamic loads can be notably (1.5 times) higher than the quasistationary
loads established at large times. The horizontal load on a submerged obstacle is identical in order of magnitude
to the total dynamic-momentum flux of the jet of the lower fluid layer and depends greatly on the degree of flow
blocking by the obstacle. The visualization of fluid currents performed in the work provides information on the
mixing dynamics at the gravity-current head and the interaction pattern of the gravity current with the obstacle.
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